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Abstract: Metabolic problems, aging, and age-related illnesses like insulin resistance, obesity, sarcopenia, 

and neurodegeneration are all significantly influenced by mitochondrial dysfunction. Foods that have been 

shown to have physiological or therapeutic benefits are known as clinical foods, and they have gained attention 

as possible modulators of mitochondrial function. To improve cellular energy homeostasis and lower oxidative 

stress, bioactive substances as polyphenols, omega-3 fatty acids, sulforaphane, curcumin, and epigallocatechin 

gallate can affect mitochondrial biogenesis, mitophagy, oxidative phosphorylation, and NAD⁺ metabolism. 

The gut-mitochondria axis, where metabolites originating from the microbiota influence mitochondrial 

pathways that connect metabolism, immunity, and nutrition, was highlighted by recent research. In addition 

to discussing molecular mechanisms and signaling pathways, this article highlights the most recent research 

on clinical diets that target mitochondrial function and briefly describes their potential therapeutic uses. 

 

Introduction 

Because of their numerous health advantages, bioactive substances obtained from foods and natural plants 

have been widely used to prevent and treat metabolic diseases, including obesity, type 2 diabetes, insulin 

resistance, non-alcoholic fatty liver disease, and cardiovascular disease [1-7]. Therefore, eating foods high in 

bioactive chemicals is a good way to lower your chance of developing metabolic illnesses [8]. Mitochondria 

are central to energy metabolism, redox signaling, and immune regulation. Dysfunction leads to chronic 

diseases such as metabolic syndrome, obesity, type 2 diabetes, neurodegeneration, and sarcopenia. Clinical 

foods (functional foods with therapeutic effects) are gaining attention as non-pharmacological interventions 

[9-11]. The pathophysiology of metabolic diseases linked to obesity involves mitochondria. Because they 

produce adenosine triphosphate (ATP) by oxidizing proteins, lipids, and carbohydrates, mitochondria are 

crucial for cellular energy metabolism [12, 13]. Mitochondrial dysfunction refers to the incapacity of 

mitochondria to generate and sustain enough amounts of ATP, which is caused by an imbalance in food signal 

input, energy generation, and oxidative respiration [14]. Several studies indicate that eating many foods affects 

mitochondrial function [15-17] and that obesity increases the risk of mitochondrial malfunction [18, 19]. 

Adopting a healthy diet and lifestyle has positive preventative and therapeutic effects on obesity and metabolic 

syndrome, according to basic, translational, clinical, epidemiological, and societal principles [20-26]. Grapes 

and berries, vegetables and fruits, turmeric, salmon, and shrimp are rich sources of dietary antioxidants like 

resveratrol, quercetin, coenzyme Q10, curcumin, and astaxanthin [27-31]. In addition, these bioactives have 

shown positive health impacts, such as anti-inflammatory and antioxidant properties that help lessen oxidative 

damage to mitochondria [32-34].  
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Mitochondria and its function: Double-membrane organelles called mitochondria are essential for cells to 

produce energy. The outer membrane, inner membrane, intermembrane gap, mitochondrial cristae, and 

mitochondrial matrix are their five separate parts. The cytosol and the mitochondrion are separated by the 

outer membrane. It has voltage-dependent anion-selective channels called porins that let hydrophilic 

molecules up to 5 kDa pass through while blocking the diffusion of bigger molecules [35, 36]. This membrane 

makes it easier for different nutrients, ions, and energy molecules to enter and leave. Because it lacks porins, 

the inner membrane is far more impermeable to most molecules than the outer membrane. As a result, just a 

few substances, including water, carbon dioxide, oxygen, and ammonia, may flow through the inner 

membrane. The inner membrane, which surrounds the mitochondrial matrix, contains electron transport chain 

(ETC) complexes that enable OXPHOS to produce ATP. Additionally, the matrix includes DNA, RNA, and 

ribosomes, and the inner membrane is divided into many folds known as cristae that expand the inner 

mitochondrial membrane's surface and promote ATP generation [37-39]. As the location of the tricarboxylic 

acid (TCA) cycle, fatty acid β-oxidation, and OXPHOS, mitochondria are commonly referred to as the cellular 

power factories because they generate chemical energy and heat through the metabolism of nutrients. Using 

reduced β-nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) from glycolysis 

and the TCA cycle, the ETC system transfers electrons through a sequence of redox processes to molecular 

oxygen, reducing it to generate water. Thermogenesis is the mechanism by which mitochondrial uncoupling 

proteins discharge the electrochemical gradient as heat [40, 41]. 

Mitochondrial dysfunction: A reduction in the mitochondria's capacity to generate enough ATP through 

OXPHOS in response to energy needs is a hallmark of mitochondrial malfunction. Reductions in 

mitochondrial biogenesis, mitochondrial membrane potential, and the activity of mitochondrial oxidative 

proteins as a result of reactive oxygen species (ROS) buildup may be the cause of this dysfunction. In 

mammalian cells, ROS are mostly produced in mitochondria [42, 43]. Natural byproducts of oxygen 

metabolism during the OXPHOS process, reactive oxygen species (ROS) including hydroxyl radicals (OH−), 

hydrogen peroxide (H2O2), and superoxide anions (O2−) can harm mitochondria and cellular components like 

DNA, proteins, lipids, and other molecules [44, 45]. 

Diet effect on mitochondria: Increased production of ROS and dysregulated bioenergetics are frequently 

linked and prevalent in human illness [46, 47]. Thus, there may be therapeutic promise in avoiding this 

imbalance. It's interesting to note that some diets have previously been shown to have an impact on the 

oxidative state of mammalian cells and mitochondrial bioenergetics. Bruckbauer and Zemel, for instance, 

discussed how increased dairy intake affects mitochondrial biogenesis and Sirtuin (Sirt) 1 activation. They 

employed human muscle and adipose tissue as well as an in vitro/in vivo method to achieve this. For four 

weeks, participants who were overweight or obese were either fed a diet heavy in dairy or one based on soy. 

Serum samples were then collected and applied to human muscle cells and adipocytes in culture. According 

to their findings, the high dairy diet group's serum markedly raised Sirt1 activity and gene expression in both 

muscle and adipocyte cells. Increased mitochondrial biogenesis was noted in the same samples, as evidenced 

by the overexpression of important genes (PGC-1α, UCP2, UCP3, and NRF1). These results imply that the 

control of Sirt1-mediated mitochondrial activity may be influenced by dairy diets [48].  

The research by Garcia-Roves and others [47] provides another illustration. This demonstrated increased 

expression of enzymes involved in fatty acid oxidation, the citrate cycle, and OXPHOS, as well as a markedly 

increased mitochondrial DNA (mtDNA) copy number, in rats fed a high-fat diet and given daily heparin 

injections to increase plasma-free fatty acids. enhanced activation of the peroxisome proliferator-activated 

receptor δ (PPARδ), which is frequently linked to enhanced mitochondrial biogenesis, was noted by the 

authors [50]. Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), a master regulator 

of mitochondrial biogenesis and oxidative metabolism, is expressed via a post-transcriptional mechanism 

rather than by raising mRNA levels when PPARδ is activated. This results in a gradual increase in 
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mitochondrial content [51]. Moreover, Leduc-Gaudet et al. demonstrated that juvenile rats fed a high-fat diet 

for 14 days exhibited no significant changes in muscle mass, body weight, or energy expenditure. But in the 

animals' muscle areas, this diet greatly increased the mitochondria's ability to oxidize fatty acids, which 

eventually affected mitochondrial respiration [52]. On the other hand, mitochondrial content and respiration 

rates with traditional complex I and II substrates did not alter. The same study's authors showed that, in 

comparison to control samples, certain skeletal muscle tissue from rats given a high-fat diet shows increased 

mitochondrial fission and decreased fusion. High-fat diet groups did not exhibit any changes in mitochondrial 

ROS generation and coupling efficiency, despite the observation of elevated mRNA levels of mitochondrial 

uncoupling proteins (UCP2 and UCP3, which can help reduce ROS generation and regulate energy 

metabolism) and mitochondrial lipid transport proteins (CPT1b and CPT2) [53]. Another group of 

investigators looked more closely at the connection between particular diets and the oxidative state of 

mitochondria. Ribeiro and others [54] showed that mice's gut microbiota is significantly altered by a diet rich 

in fat and cholesterol. Increased metabolism of short-chain fatty acids, such butyrate and propionate, was seen 

in the same model. Adult neurogenesis is disturbed as a result of these alterations, which are linked to increased 

oxidative stress and cell death in parts of the animal's cortex and hippocampus. The authors noted how the 

observed reduced expression of Sirt3 and adaptive increases in total manganese superoxide dismutase 2 levels 

may indicate an imbalanced radical scavenger system as the molecular mechanism behind these effects. In the 

same study, mice given the changed diets showed higher levels of mitochondrial biogenesis than the control 

group, as evidenced by higher levels of Tfam (mitochondrial transcription factor A) expression and mtDNA 

copy number. Ribeiro and others [54] came to the conclusion that although this increase in mitochondrial 

biogenesis supports neurogenesis and energy generation, it is linked to an increase in ROS production. 

Clinical aspect: Most experts believe that the mitochondria's primary function is to produce energy for cellular 

needs. Because of this, the mitochondria can support cellular metabolism, redox signaling, and ion 

homeostasis. Cellular survival and health depend on each of these factors [55]. The pathogenesis or 

progression of many human diseases or pathophysiologies, such as diabetes, cancer, neurodegenerative and 

cardiovascular diseases, sepsis, traumatic injury, inflammation, aging, frailty, and loss of skin elasticity, is 

suggested by the dysregulation of their function. The precise role and mechanisms through which the 

mitochondria contribute to human diseases remain unclear, creating new challenges for basic and translational 

biomedical science, despite the scientific community's intense focus on mitochondrial physiology-one study 

out of every 154 studies indexed in PubMed since 1998 has examined mitochondrial function [56]. recently, 

oxidative stress produced by the mitochondria is either the primary cause or a secondary exacerbating factor 

that drives a number of tissues pathophysiologies [57]. On the other hand, dietary interventions like the 

ketogenic diet, fasting, or Mediterranean diet can alter the molecular environment of previously 

malfunctioning mitochondria in a number of conditions, such as cancer, Alzheimer's disease, and heart failure, 

reducing a number of symptoms and improving quality of life. Fasting and Mediterranean die have been shown 

to increase longevity because they can keep the mitochondria in a fit state. Clinicians and other scientists are 

able to maximize their treatments that control cellular powerhouses and affect human health since food is a 

regular habit. 

 

Conclusion: Using a wide range of models, researchers have examined the possible benefits of dietary 

interventions on mitochondrial function in recent decades. Furthermore, research has been done on how 

particular diets affect mitochondrial parameters that are dysregulated in particular disorders. Low-glycemic 

diets, for instance, have been demonstrated to benefit diabetic and pre-diabetic patients by lowering glycated 

hemoglobin, fasting glucose, body mass index, and cholesterol; however, they have no effect on other 

significant indicators, such as triglyceride levels and fasting insulin. Additionally, the Mediterranean diet, 

which is high in monounsaturated fats and antioxidants, has been associated with neuroprotective benefits that 

appear to be somewhat related to mitochondrial function. 
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