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Abstract: Metabolic problems, aging, and age-related illnesses like insulin resistance, obesity, sarcopenia,
and neurodegeneration are all significantly influenced by mitochondrial dysfunction. Foods that have been
shown to have physiological or therapeutic benefits are known as clinical foods, and they have gained attention
as possible modulators of mitochondrial function. To improve cellular energy homeostasis and lower oxidative
stress, bioactive substances as polyphenols, omega-3 fatty acids, sulforaphane, curcumin, and epigallocatechin
gallate can affect mitochondrial biogenesis, mitophagy, oxidative phosphorylation, and NAD* metabolism.
The gut-mitochondria axis, where metabolites originating from the microbiota influence mitochondrial
pathways that connect metabolism, immunity, and nutrition, was highlighted by recent research. In addition
to discussing molecular mechanisms and signaling pathways, this article highlights the most recent research
on clinical diets that target mitochondrial function and briefly describes their potential therapeutic uses.

Introduction

Because of their numerous health advantages, bioactive substances obtained from foods and natural plants
have been widely used to prevent and treat metabolic diseases, including obesity, type 2 diabetes, insulin
resistance, non-alcoholic fatty liver disease, and cardiovascular disease [1-7]. Therefore, eating foods high in
bioactive chemicals is a good way to lower your chance of developing metabolic illnesses [8]. Mitochondria
are central to energy metabolism, redox signaling, and immune regulation. Dysfunction leads to chronic
diseases such as metabolic syndrome, obesity, type 2 diabetes, neurodegeneration, and sarcopenia. Clinical
foods (functional foods with therapeutic effects) are gaining attention as non-pharmacological interventions
[9-11]. The pathophysiology of metabolic diseases linked to obesity involves mitochondria. Because they
produce adenosine triphosphate (ATP) by oxidizing proteins, lipids, and carbohydrates, mitochondria are
crucial for cellular energy metabolism [12, 13]. Mitochondrial dysfunction refers to the incapacity of
mitochondria to generate and sustain enough amounts of ATP, which is caused by an imbalance in food signal
input, energy generation, and oxidative respiration [ 14]. Several studies indicate that eating many foods affects
mitochondrial function [15-17] and that obesity increases the risk of mitochondrial malfunction [18, 19].
Adopting a healthy diet and lifestyle has positive preventative and therapeutic effects on obesity and metabolic
syndrome, according to basic, translational, clinical, epidemiological, and societal principles [20-26]. Grapes
and berries, vegetables and fruits, turmeric, salmon, and shrimp are rich sources of dietary antioxidants like
resveratrol, quercetin, coenzyme Q10, curcumin, and astaxanthin [27-31]. In addition, these bioactives have
shown positive health impacts, such as anti-inflammatory and antioxidant properties that help lessen oxidative
damage to mitochondria [32-34].
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Mitochondria and its function: Double-membrane organelles called mitochondria are essential for cells to
produce energy. The outer membrane, inner membrane, intermembrane gap, mitochondrial cristae, and
mitochondrial matrix are their five separate parts. The cytosol and the mitochondrion are separated by the
outer membrane. It has voltage-dependent anion-selective channels called porins that let hydrophilic
molecules up to 5 kDa pass through while blocking the diffusion of bigger molecules [35, 36]. This membrane
makes it easier for different nutrients, ions, and energy molecules to enter and leave. Because it lacks porins,
the inner membrane is far more impermeable to most molecules than the outer membrane. As a result, just a
few substances, including water, carbon dioxide, oxygen, and ammonia, may flow through the inner
membrane. The inner membrane, which surrounds the mitochondrial matrix, contains electron transport chain
(ETC) complexes that enable OXPHOS to produce ATP. Additionally, the matrix includes DNA, RNA, and
ribosomes, and the inner membrane is divided into many folds known as cristae that expand the inner
mitochondrial membrane's surface and promote ATP generation [37-39]. As the location of the tricarboxylic
acid (TCA) cycle, fatty acid B-oxidation, and OXPHOS, mitochondria are commonly referred to as the cellular
power factories because they generate chemical energy and heat through the metabolism of nutrients. Using
reduced B-nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) from glycolysis
and the TCA cycle, the ETC system transfers electrons through a sequence of redox processes to molecular
oxygen, reducing it to generate water. Thermogenesis is the mechanism by which mitochondrial uncoupling
proteins discharge the electrochemical gradient as heat [40, 41].

Mitochondrial dysfunction: A reduction in the mitochondria's capacity to generate enough ATP through
OXPHOS in response to energy needs is a hallmark of mitochondrial malfunction. Reductions in
mitochondrial biogenesis, mitochondrial membrane potential, and the activity of mitochondrial oxidative
proteins as a result of reactive oxygen species (ROS) buildup may be the cause of this dysfunction. In
mammalian cells, ROS are mostly produced in mitochondria [42, 43]. Natural byproducts of oxygen
metabolism during the OXPHOS process, reactive oxygen species (ROS) including hydroxyl radicals (OH"),
hydrogen peroxide (H202), and superoxide anions (O2") can harm mitochondria and cellular components like
DNA, proteins, lipids, and other molecules [44, 45].

Diet effect on mitochondria: Increased production of ROS and dysregulated bioenergetics are frequently
linked and prevalent in human illness [46, 47]. Thus, there may be therapeutic promise in avoiding this
imbalance. It's interesting to note that some diets have previously been shown to have an impact on the
oxidative state of mammalian cells and mitochondrial bioenergetics. Bruckbauer and Zemel, for instance,
discussed how increased dairy intake affects mitochondrial biogenesis and Sirtuin (Sirt) 1 activation. They
employed human muscle and adipose tissue as well as an in vitro/in vivo method to achieve this. For four
weeks, participants who were overweight or obese were either fed a diet heavy in dairy or one based on soy.
Serum samples were then collected and applied to human muscle cells and adipocytes in culture. According
to their findings, the high dairy diet group's serum markedly raised Sirtl activity and gene expression in both
muscle and adipocyte cells. Increased mitochondrial biogenesis was noted in the same samples, as evidenced
by the overexpression of important genes (PGC-1a, UCP2, UCP3, and NRF1). These results imply that the
control of Sirtl-mediated mitochondrial activity may be influenced by dairy diets [48].

The research by Garcia-Roves and others [47] provides another illustration. This demonstrated increased
expression of enzymes involved in fatty acid oxidation, the citrate cycle, and OXPHOS, as well as a markedly
increased mitochondrial DNA (mtDNA) copy number, in rats fed a high-fat diet and given daily heparin
injections to increase plasma-free fatty acids. enhanced activation of the peroxisome proliferator-activated
receptor & (PPARGJ), which is frequently linked to enhanced mitochondrial biogenesis, was noted by the
authors [50]. Peroxisome proliferator-activated receptor gamma coactivator-1o (PGC-1a), a master regulator
of mitochondrial biogenesis and oxidative metabolism, is expressed via a post-transcriptional mechanism
rather than by raising mRNA levels when PPARS is activated. This results in a gradual increase in
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mitochondrial content [51]. Moreover, Leduc-Gaudet et al. demonstrated that juvenile rats fed a high-fat diet
for 14 days exhibited no significant changes in muscle mass, body weight, or energy expenditure. But in the
animals' muscle areas, this diet greatly increased the mitochondria's ability to oxidize fatty acids, which
eventually affected mitochondrial respiration [52]. On the other hand, mitochondrial content and respiration
rates with traditional complex I and II substrates did not alter. The same study's authors showed that, in
comparison to control samples, certain skeletal muscle tissue from rats given a high-fat diet shows increased
mitochondrial fission and decreased fusion. High-fat diet groups did not exhibit any changes in mitochondrial
ROS generation and coupling efficiency, despite the observation of elevated mRNA levels of mitochondrial
uncoupling proteins (UCP2 and UCP3, which can help reduce ROS generation and regulate energy
metabolism) and mitochondrial lipid transport proteins (CPT1b and CPT2) [53]. Another group of
investigators looked more closely at the connection between particular diets and the oxidative state of
mitochondria. Ribeiro and others [54] showed that mice's gut microbiota is significantly altered by a diet rich
in fat and cholesterol. Increased metabolism of short-chain fatty acids, such butyrate and propionate, was seen
in the same model. Adult neurogenesis is disturbed as a result of these alterations, which are linked to increased
oxidative stress and cell death in parts of the animal's cortex and hippocampus. The authors noted how the
observed reduced expression of Sirt3 and adaptive increases in total manganese superoxide dismutase 2 levels
may indicate an imbalanced radical scavenger system as the molecular mechanism behind these effects. In the
same study, mice given the changed diets showed higher levels of mitochondrial biogenesis than the control
group, as evidenced by higher levels of Tfam (mitochondrial transcription factor A) expression and mtDNA
copy number. Ribeiro and others [54] came to the conclusion that although this increase in mitochondrial
biogenesis supports neurogenesis and energy generation, it is linked to an increase in ROS production.

Clinical aspect: Most experts believe that the mitochondria's primary function is to produce energy for cellular
needs. Because of this, the mitochondria can support cellular metabolism, redox signaling, and ion
homeostasis. Cellular survival and health depend on each of these factors [55]. The pathogenesis or
progression of many human diseases or pathophysiologies, such as diabetes, cancer, neurodegenerative and
cardiovascular diseases, sepsis, traumatic injury, inflammation, aging, frailty, and loss of skin elasticity, is
suggested by the dysregulation of their function. The precise role and mechanisms through which the
mitochondria contribute to human diseases remain unclear, creating new challenges for basic and translational
biomedical science, despite the scientific community's intense focus on mitochondrial physiology-one study
out of every 154 studies indexed in PubMed since 1998 has examined mitochondrial function [56]. recently,
oxidative stress produced by the mitochondria is either the primary cause or a secondary exacerbating factor
that drives a number of tissues pathophysiologies [57]. On the other hand, dietary interventions like the
ketogenic diet, fasting, or Mediterranean diet can alter the molecular environment of previously
malfunctioning mitochondria in a number of conditions, such as cancer, Alzheimer's disease, and heart failure,
reducing a number of symptoms and improving quality of life. Fasting and Mediterranean die have been shown
to increase longevity because they can keep the mitochondria in a fit state. Clinicians and other scientists are
able to maximize their treatments that control cellular powerhouses and affect human health since food is a
regular habit.

Conclusion: Using a wide range of models, researchers have examined the possible benefits of dietary
interventions on mitochondrial function in recent decades. Furthermore, research has been done on how
particular diets affect mitochondrial parameters that are dysregulated in particular disorders. Low-glycemic
diets, for instance, have been demonstrated to benefit diabetic and pre-diabetic patients by lowering glycated
hemoglobin, fasting glucose, body mass index, and cholesterol; however, they have no effect on other
significant indicators, such as triglyceride levels and fasting insulin. Additionally, the Mediterranean diet,
which is high in monounsaturated fats and antioxidants, has been associated with neuroprotective benefits that
appear to be somewhat related to mitochondrial function.
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