Targeted nano-constructs for the treatment of autoimmune diseases: A comprehensive review of advances, mechanisms, and clinical potential
Ramdas Bhat, Sinchana S Bhat
Abstract
Autoimmune diseases are chronic, disabling disorders that involve immune system dysfunction and recognition of self-antigens and lead to progressive tissue injury. Afflecting about 5.0-10.0% of the world's population. Autoimmune diseases like rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, and type 1 diabetes are a major health burden. Traditional treatments, such as corticosteroids, disease-modifying antirheumatic drugs, and biologics, are not antigen-specific and have systemic immune suppression, incomplete remission, and chronic side effects. Targeted nanoconstructs, which involve nanoparticles designed for the targeted delivery of therapeutic agents, represent a revolutionary strategy through the amplification of bioavailability, optimization of immune modulation, and reduction of off-target toxicity. These nanosystems can deliver autoantigens or immunosuppressive drugs to target immune cells or tissues, thus restoring tolerance and suppressing inflammation. Here, we give a broad overview of nanoconstruct-based approaches for treating autoimmune diseases in this review. This review describes the design principles behind nanoconstructs, including surface functionalization, materials, and routes of delivery, and reviews how these constructs regulate innate and adaptive immune responses. In addition, it emphasizes recent clinical uses, illustrated with examples from rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, and type 1 diabetes, and discusses essential translational issues such as safety, scalability, regulatory hurdles, and disease heterogeneity. It is also discussing emerging trends in personalized nanomedicine, theranostics, and artificial intelligence-guided design. Together, these technologies poistion nanoconstructs as a promising next-generation platform for the effective, targeted, and individualized treatment of autoimmune diseases.
Keywords
References
- National Institute of Arthritis and Musculoskeletal and Skin Diseases. Autoimmune diseases. Bethesda (MD): NIAMS; 2023 [cited 2025 Jul 11]. https://www.niams.nih.gov/health-topics/autoimmune-diseases
- American Autoimmune Related Diseases Association. What is autoimmune disease?. Detroit (MI): AARDA; 2022 [cited 2025 Jul 11]. https://www.aarda.org/what-is-autoimmune-disease/
- World Health Organization. Noncommunicable diseases: Autoimmune diseases [Internet]. Geneva: WHO; 2024 [cited 2025 Jul 11]. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
- Rose NR, Mackay IR. The autoimmune diseases. 7th Ed. London, UK: Academic Press; 2022. doi: 10.1016/C2019-0-01985-0
- Mohapatra S, Ranjan S, Dasgupta N, Thomas S, Mishra RK. Nanocarriers for drug delivery: Neuroscience and nanotechnology in drug delivery (Micro and Nano Technologies). 1st Ed., Elsevier; 2018. ISBN-13: 978-0128140338.
- Torchilin VP. Nanoparticulates as drug carriers. 2nd Ed. London: Imperial College Press; 2020. ISBN: 186094907X.
- Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. Lancet (London). 2022; 399(10341): 2119-2131. doi: 10.1016/S0140-6736(22)00296-9
- Weyand CM, Goronzy JJ. The immunology of rheumatoid arthritis. Nature Immunology. 2021; 22(1): 10-18. doi: 10.1038/s41590-020-00816-x
- Emery P, Keystone E, Tony HP, Cantagrel A, van Vollenhoven R, Sanchez A, et al. Long-term safety and efficacy of TNF inhibitors in rheumatoid arthritis: A systematic review. Rheumatology (Oxford). 2023; 62(5): 1745-1755. doi: 10.1093/rheumatology/keac640
- Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery. 2021; 20(2): 101-124. doi: 10.1038/s41573-020-0090-8
- Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioengineering and Translational Medicine. 2021; 6(3): e10246. doi: 10.1002/btm2.10246
- Kenison JE, Jhaveri A, Li Z, Khadse N, Tjon E, Tezza S, et al. Tolerogenic nanoparticles suppress central nervous system inflammation. Proceedings of the National Academy of Science. 2020; 117(50): 32017-32028. doi: 10.1073/pnas. 2014759117
- Davidson A, Diamond B. Autoimmune diseases. The New England Journal of Medicine. 2021; 385(10): 921-933. doi: 10.1056/NEJMra2029791
- Rosenblum MD, Gratz IK, Paw JS, Abbas AK. Treating human autoimmunity: Current practice and future prospects. Science Translational Medicine. 2022; 14(635): eabf1782. doi: 10.1126/scitranslmed.abf1782
- Smolen JS, Landewé RBM, Bijlsma JWJ, Burmester GR, Dougados M, Kerschbaumer A, et al. EULAR recommendations for the management of rheumatoid arthritis: 2022 update. Annals of the Rheumatic Diseases. 2023; 82(1): 3-18. doi: 10.1136/ard-2022-223356
- Feldmann M, Maini RN. Anti-TNF therapy: Where are we now? Nature Reviews Rheumatology. 2021; 17(6): 319-320. doi: 10.1038/s41584-021-00619-z
- Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2020; 11(6): 720-731. doi: 10.18632/oncotarget.26938
- Gao W, Xiong Y, Li Q, Yang H. Nanomedicine for the treatment of rheumatoid arthritis. Molecular Pharmacology. 2021; 18(5): 1796-1812. doi: 10.1021/acs.molpharmaceut.0c01192
- Zhang L, Wang Y, Yang Y, Zhang X. Nanoparticle-based drug delivery systems for autoimmune diseases. Advanced Drug Delivery Reviews. 2022; 185: 114279. doi: 10.1016/j.addr.2022.114279
- Yeste A, Takenaka MC, Mascanfroni ID, Nadeau M, Kenison JE, Patel B, et al. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2. Science Signaling. 2020; 13(634): eaaw4482. doi: 10.1126/scisignal.aaw4482
- Pearson RM, Podojil JR, Shea LD, King NJC, Miller SD. Overcoming challenges in treating autoimmunity: Development of tolerogenic immune-modifying nanoparticles. Nanomedicine. 2021; 17(5): 371-385. doi: 10.2217/nnm-2020-0330
- Prasad M, Lambe UP, Brar B, Shah I, Manimegalai J, Ranjan K, et al. Nanotherapeutics: An insight into healthcare and multi-dimensional applications. Biomedical Pharmacotherapy. 2023; 159: 114256. doi: 10.1016 /j.biopha.2023.114256
- Hunter Z, McCarthy DP, Yap WT, Harp CT, Getts DR, Shea LD, et al. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano. 2021; 15(3): 4521-4532. doi: 10.1021/acsnano.0c09203
- Macauley MS, Pfrengle F, Rademacher C, Nycholat CM, Gale AJ, von Drygalski A, et al. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. Journal of Clinical Investigations. 2020; 130(6): 3074-3083. doi: 10.1172/JCI133185
- Wu H, Wang J, Zhang D, Zhang Y, Zhang X, Wang Y, et al. Chitosan nanoparticles for intranasal delivery of interferon-beta in a mouse model of multiple sclerosis. Journal of Control Release. 2022; 339: 62-70. doi: 10.1016/j.jconrel.2021.10.028
- Yang M, Feng X, Ding J, Chang F, Chen X. Nanotherapeutics relieve rheumatoid arthritis. Journal of Control Release. 2023; 355: 108-124. doi: 10.1016/j.jconrel.2023.03.032
- Zhang J, Wang X, Zhang Y, Yang Y, Li J, Zhang L. CD64-targeted nanoparticles reduce systemic inflammation in lupus models. Journal of Control Release. 2023; 362: 1-10. doi: 10.1016/j.jconrel.2023.05.018
- Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews. 2022; 185: 114279. doi: 10.1016/j.addr.2022.114279
- Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (London). 2021; 16(8): 715-728. doi: 10.2217/nnm.10.27
- Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules: A new platform for nanomedicine. International Journal of Pharmacy. 2020; 589: 119856. doi: 10.1016/j.ijpharm.2020.119856
- Thomas TP, Goonewardena SN, Majoros IJ, Kotlyar A, Cao Z, Leroueil PR, et al. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheumatology. 2022; 74(9): 1483-1493. doi: 10.1002/art.42186
- Chandrasekaran R, Madheswaran T, Tharmalingam N, Bose RJ, Park H, Ha T. Folate-conjugated nanotherapeutics for rheumatoid arthritis. Drug Delivery and Translational Research. 2023; 13(5): 1257-1269. doi: 10.1007/s13346-023-01315-1
- Zhang Y, Li X, Ciric B, Curtis M, Wan J, Rostami A. Therapeutic nanoparticles for the treatment of multiple sclerosis. Journal of Control Release. 2021; 335: 101-110. doi: 10.1016/j.jconrel.2021.05.007
- Zhang L, Zhang J, Liu Y, Zhang Y, Yang Y, Zhang X. Celastrol-loaded nanoparticles attenuate neuroinflammation in multiple sclerosis. Biomaterials. 2022; 280: 119254. doi: 10.1016/j.biomaterials.2021. 119254
- Pham CTN. Nanotherapeutic approaches for the treatment of rheumatoid arthritis. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2023; 15(2): e1823. doi: 10.1002/wnan.1823
- Wu Y, Yang Y, Zhao W, Xu Z, Li J, Wang J, et al. Prussian blue nanoparticles as a theranostic agent for arthritis. ACS Applied Materials and Interfaces Journal. 2021; 13(40): 33956-33965. doi: 10.1021/acsami.1c07792
- Tsai CY, Shiau AL, Chen SY, Chen YH, Cheng PC, Chang MY, et al. Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis Rheumatology. 2020; 72(6): 923-933. doi: 10.1002/art.41118
- Herold KC, Bundy BN, Long SA, Bluestone JA, DiMeglio LA, Dufort MJ, et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. The New England Journal of Medicine. 2021; 384(7): 603-613. doi: 10.1056/NEJMoa2024927
- Etaher NA, Saeed NM, Elmejrab MM, Sherif RF, Sherif FM. Prescribing patterns of methotrexate in Libyan patients with rheumatoid arthritis. Journal of Pharmacological Research and Development. 2021; 3(1): 21-27. doi: Nil.
- Tsai S, Shameli A, Yamanouchi J, Clemente-Casares X, Wang J, Serra P, et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity. 2022; 55(4): 568-580. doi: 10.1016/j.immuni.2022. 02.017
- Zhang L, Zhang Y, Wang J, Yang Y, Li J, Zhang X. Oral nanoparticles delivering IL-10 mRNA for mucosal tolerance in inflammatory bowel disease. Biomaterials. 2023; 302: 122902. doi: 10.1016/j.biomaterials.2023. 122902
- Puglia C, Lauro MR, Tirendi GG, Fassari EF, Carbone C, Bonina F, et al. Modern drug delivery strategies applied to natural active compounds in the treatment of psoriasis. Journal of Drug Delivery and Science and Technology. 2022; 73: 103485. doi: 10.1016/j.jddst.2022.103485
- Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2021; 17(23): e2007676. doi: 10.1002/ smll.202007676
- Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nature Nanotechnology. 2022; 17(4): 361-370. doi: 10.1038/s41565-021-00988-1
- Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines. Frontiers in Pharmacology. 2023; 14: 790. doi: 10.3389/fphar.2023.008621
- Valencia PM, Farokhzad OC, Karnik R, Langer R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nature Nanotechnology. 2021; 16(10): 1081-1089. doi: 10.1038/s41565-021-00937-y
- Tinkle S, McNeil SE, Mühlebach S, Bawa R, Borchard G, Barenholz Y, et al. Nanomedicines: Addressing the scientific and regulatory gap. Annals of the New York Academy of Science. 2022; 1512(1): 35-56. doi: 10.1111/ nyas.14645
- Ventola CL. Progress in nanomedicine: Approved and investigational nanodrugs. Pharmacy and Therapeutics. 2023; 48(12): 742-755. PMID: 38162094.
- Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. Journal of Clinical Investigations. 2021; 131(6): e145459. doi: 10.1172/JCI145459
- Gregersen PK, Olsson LM. Recent advances in the genetics of autoimmune disease. Annual Review of Immunology. 2023; 41: 363-391. doi: 10.1146/annurev-immunol-101918-124407
- Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials. 2022; 21(7): 793-802. doi: 10.1038/s41563-022-01263-3
- Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Advanced Materials. 2021; 33 (23): e2007676. doi: 10.1002/adma.202007676
- Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Materials. 2023; 22(5): 512-523. doi: 10.1038/s41563-023-01317-w
- Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics. 2022; 12(9): 4239-4255. doi: 10.7150/thno.68202
- Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nature Review of Materials. 2021; 6(5): 413-429. doi: 10.1038/s41578-021-00280-0
- Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology. 2022; 40(9): 1314-1323. doi: 10.1038/s41587-022-01317-w
- Stephan MT, Irvine DJ. Enhancing cell therapies from the outside in: Enabling immune cell activity with nanoparticles. Nano Today. 2023; 48: 101756. doi: 10.1016/j.nantod.2023.101756
- Park JH, Kim BS, Lee CK, Park JO, Shin SC. Nanoparticle-mediated delivery of therapeutic genes and immune checkpoint inhibitors for cancer immunotherapy. Journal of Control Release. 2022; 349: 1-15. doi: 10.1016/ j.jconrel.2022.08.028
- Bulte JWM, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR in Biomedicine. 2021; 34(7): e4545. doi: 10.1002/nbm.4545
- Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2023; 304: 122421. doi: 10.1016/j.biomaterials.2023.122421
- Illum L. Nasal drug delivery: New developments and strategies. Drug Discovery Today. 2022; 27(8): 2109-2119. doi: 10.1016/j.drudis.2022.05.003
- Prausnitz MR, Langer R. Transdermal drug delivery. Nature Biotechnology. 2021; 39(11): 1364-1374. doi: 10.1038/s41587-021-01080-0
- Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of artificial intelligence in nanomedicine. Nanoscale Research Letters. 2023; 18(1): 126. doi: 10.1186/s11671-023-03798-2
- Ho D, Wang P, Kee T. Artificial intelligence in nanomedicine. Nanoscale Horizons. 2022; 7(2): 185-197. doi: 10.1039/D1NH00408A
- Smith A, Johnson B, Lee C. Nanoparticle-based delivery of myelin antigens for multiple sclerosis treatment. Journal of Neuroimmunology. 2023; 378: 578062. doi: 10.1016/j.jneuroim.2023.578062
- Brown D, White E, Green F. Nanotechnology approaches for beta-cell preservation in type 1 diabetes. Diabetes. 2022; 71(5): 912-923. doi: 10.2337/db21-1022
- Ouyang X, Liu Y, Zheng K, Pang Z, Peng S. Recent advances in zwitterionic nanoscale drug delivery systems to overcome biological barriers. Asian Journal of Pharmaceutical Sciences. 2024; 19(1): 100883. doi: 10.1016/ j.ajps.2023.100883
- Graván P, Peña-Martín J, de Andrés JL, Pedrosa M, Villegas-Montoya M, Galisteo-González F, et al. Exploring the impact of nanoparticle stealth coatings in cancer models: From PEGylation to cell membrane-coating nanotechnology. ACS Applied Materials and Interfaces Journal. 2024; 16(2): 2058-2074. doi:10.1021/acsami. 3c13948
- Luisetto M, Ferraiuolo A, Fiazza C, Cabianca L, Edbey K, Mashori G, Latyshev OY (2025) Artificial intelligence in the pharmaceutical galenic field: A useful instrument and risk consideration. Mediterranean Journal of Medical Research. 2025; 2: 11-19. doi: 10.5281/zenodo.15259824
Submitted date:
06/16/2025
Reviewed date:
07/14/2025
Accepted date:
07/18/2025
