31DEC

Welcome To Mediterr J Med Med Sci

Manuscripts are accepted for consideration with understanding that they are represent original material and they are not being considered for publication elsewhere. The editors welcome the submission of relevant articles for editorial consideration. Manuscripts and all scientific and professional data should be addressed to Editor-in-Cheif (Fmosherif@yahoo.com).

Mediterranean Journal of Medicine and Medical Sciences
https://mmj.org.ly/article/doi/10.5281/zenodo.17156292

Mediterranean Journal of Medicine and Medical Sciences

REVIEW

Engineering the gut-brain connection for the future of mental health with psychobiotics

Fathima, Ramdas Bhat

Downloads: 4
Views: 72

Abstract

The gut-brain axis is a dynamic, bidirectional communication system connecting the central nervous system with the enteric nervous system. It regulates digestion, cognition, mood, and immune responses and plays an important role in neuropsychiatric and gastrointestinal disorders. Psychobiotics are described as live organisms that interact with the gut-brain axis to improve mental health in the host when consumed in sufficient amounts. This review outlines the mechanism through which psychobiotics will exert their effects, including neurotransmitter modulation (e.g., serotonin, GABA), regulation of the hypothalamic-pituitary-adrenal axis, inhibition of neuroinflammation and oxidative stress, restoration of intestinal barrier integrity, and production of neuroactive microbial metabolites such as short-chain fatty acids and tryptophan derivatives. Advances in psychobiotics include engineered microbial strains, targeted delivery systems, personalized therapies, and combination therapies improving mental health. Despite these advances, challenges such as individual differences, regulatory issues, and ethical concerns persist. Continued clinical research is needed to confirm that the psychobiotics are safe and effective for the treatment of psychiatric and neurodevelopmental disorders.

Keywords

Gut-brain axis, hypothalamic-pituitary-adrenal axis, microbiome

References

  1. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut–brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology. 2015; 28(2): 203-209. PMID: 25830558; PMCID: PMC4367209.
  2. Cryan JF, Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurology. 2020; 19(2): 179-194. doi: 10.1016/S1474-4422(19)30344-4
  3. World Health Organization. Mental health [Internet]. Geneva: World Health Organization; 2023 [cited 2025 Aug 5]. Available from: https://www.who.int/health-topics/mental-health
  4. Saeed NM, Elrayani AS, Sherif RF, Sherif FM. Postpartum depression and associated risk factors in Libya. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2022; 2(2): 77-87. doi: 10.5281/zenodo. 6780513
  5. Foster JA, Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences. 2013; 36(5): 305-312. doi: 10.1016/j.tins.2013.01.005
  6. Dinan TG, Stanton C, Cryan JF. Psychobiotics: A novel class of psychotropic. Biological Psychiatry. 2013; 74(10): 720-726. doi: 10.1016/j.biopsych.2013.05.001
  7. Sherif FM, Ahmed S. Basic aspects of GABA-transaminase in neuropsychiatric disorders. Clinical Biochemistry. 28(2): 145-154. doi: 10.1016/0009-9120(94)00074-6
  8. Cryan JF, Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Moloney MG, et al. The microbiota-gut-brain axis. Physiology Reviews. 2019; 99(4): 1877-2013. doi: 10.1152/physrev.00018.2018
  9. Rutsch A, Kantsjo JB, Ronchi F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Frontiers in Immunology. 2020; 11: 604179. doi: 10.3389/fimmu.2020.604179
  10. Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Frontiers in Neurosciences. 2018; 12: 49. doi: 10.3389/fnins.2018.00049
  11. Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Frontiers in Psychiatry. 2018; 9: 44. doi: 10.3389/fpsyt.2018.00044
  12. Fulling C, Dinan TG, Cryan JF. Gut microbe to brain signalling: What happens in vagus. Neuron. 2019; 101(6): 998-1002. doi: 10.1016/j.neuron.2019.02.008
  13. Bercik P, Collins SM. The effects of inflammation, infection and antibiotics on the microbiota-gut-brain axis. Advances in Experimental Medicine and Biology. 2014; 817: 279-289. doi: 10.1007/978-1-4939-0897-4_13
  14. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research. 2015; 277: 32-48. doi: 10.1016/j.bbr.2014.07.027
  15. Schneider S, Wright CM, Heuckeroth RO. Unexpected roles for the second brain: Enteric nervous system as master regulator of bowel function. Annual Review of Physiology. 2019; 81: 235-259. doi: 10.1146/annurev-physiol-021317-121515
  16. Herman JP, Tasker JG. Neuroendocrine stress integration: glucocorticoid feedback mechanisms. Comprehensive Physiology. 2016; 6(2): 603-621. doi: 10.1002/cphy.c150033
  17. Peirce JM, Alvina K. The role of inflammation and the gut microbiome in depression and anxiety. Journal of Neuroscience Research. 2019; 97(10): 1223-1241. doi: 10.1002/jnr.24476
  18. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nature Reviews Gastroenterology and Hepatology. 2009; 6(5): 306-314. doi: 10.1038/nrgastro.2009.35
  19. Bhattarai Y, Muniz Pedrogo DA, Kashyap PC. Irritable bowel syndrome: a gut microbiota-related disorder? American Journal of Physiology Gastrointestinal and Liver Physiology. 2017; 312(1): G52-62. doi: 10.1152/ ajpgi.00338.2016
  20. Rafi IK, Bhuiyan MH. A brief overview of medicinal plants to treat Inflammatory Bowel Diseases. Mediterranean Journal of Medicine and Medical Sciences. 2025; 1(2): 23-31. doi: 10.5281/zenodo.17014538
  21. Kim N, Yun M, Oh YJ, Choi HJ. Mind-altering with the gut: modulation of the gut–brain axis with probiotics. Journal of Microbiology. 2018; 56(3): 172-182. doi: 10.1007/s12275-018-8032-4
  22. Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017; 46(4): 562-576. doi: 10.1016/j.immuni.2017.04.008
  23. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience. 2017; 20(2): 145-155. doi: 10.1038/nn.4476
  24. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nature Reviews Immunology. 2016; 16(1): 22-34. doi: 10.1038/nri.2015.5
  25. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience. 2008; 9(1): 46-56. doi: 10.1038 /nrn2297
  26. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nature Reviews Gastroenterology and Hepatology. 2019; 16(8): 461-478. doi: 10.1038/s41575 -019-0157-3
  27. Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology (Lausanne). 2020; 11: 25. doi: 10.1038/s41467-020-15508-1
  28. Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. The role of the microbiome in the neurobiology of social behaviour. Biological Psychiatry. 2016; 79(9): 677-685. doi: 10.1016/j.biopsych.2015.07.008
  29. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, et al. Assessment of psychotropic-like properties of a probiotic formulation in rats and humans. British Journal of Nutrition. 2011; 105(5): 755-764. doi: 10.1017/S0007114510004317
  30. Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PWJ. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl). 2015; 232(10): 1793-801. doi: 10.1007/s00213-014-3810-0
  31. Westfall S, Pasinetti GM. Microbiome, probiotics and neurodegenerative diseases. Current Opinion in Biotechnology. 2017; 44: 118-123. doi: 10.1016/j.copbio.2016.11.006
  32. Aguilar-Toala JE, Garcia-Varela R, Garcia HS, Mata-Haro V, Gonzalez-Cordova AF, Vallejo-Cordoba B, et al. Postbiotics: An evolving term within the functional foods field. Trends in Food Sciences and Technology. 2018; 75: 105-114. doi: 10.1016/j.tifs.2018.03.009
  33. Charbonneau MR, Isabella VM, Li N, Kurtz CB. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nature Communications. 2020; 11(1): 1-11. 1738. doi: 10.1038/s41467-020-15508-1
  34. Cui J, Wang W, Tang Y, Feng S, Liu H, Hao Z. Application of psychobiotics in clinical treatment of mental disorders: neurodevelopmental disorders, neurodegenerative diseases, depression and anxiety. Interdisciplinary Medicine. 2025; 3(1): e20240041. doi: 10.1002/INMD.20240041
  35. Sharma R, Gupta D, Mehrotra R, Mago P. Psychobiotics: the next-generation probiotics for the brain. Current Microbiology. 2021; 78: 449-463. doi: 10.1007/s00284-020-02289-5
  36. Ahmed R, Khandaker MS. Natural products as of nutraceuticals treatment for neurological disorders: An overview. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2025; 5(2): 62-69. doi: 10.5281/ zenodo.15226021
  37. Faraji N, Payami B, Ebadpour N, Gorji A. Vagus nerve stimulation and gut microbiota interactions: a novel therapeutic avenue for neuropsychiatric disorders. Neuroscience and Biobehavioural Reviews. 2025; 23(3): 23-28.
  38. deMedeiros AC, Gonçalves JS, Silva AR. A narrative review of psychobiotics: probiotics that influence the gut-brain axis. Medicina (Kaunas). 2024; 60(4): 601. doi: 10.3390/medicina60040601
  39. Yunes RA, Poluektova EU, Dyakov IN, Klimina KM, Kovtun AS, Averina OV, et al. GABA production and structure of gadB/gadC genes in lactic acid bacteria isolated from human intestine. Anaerobe. 2016; 42: 197-204. doi: 10.1016/j.anaerobe.2016.10.011
  40. Sung BH, Han J, Yim SS, Kim YH, Lee CH, Kim SC. Synthetic microbial consortia for the production of biochemicals. Biotechnology Advances. 2021; 47: 107683. doi: 10.1016/j.biotechadv.2020.107683
  41. Lu Y, Wang J, Liu H, Shen J. Engineering probiotic bacteria for the production of neuroactive compounds. Microbial Cell Factories. 2021; 20(1): 1-15. doi: 10.1186/s12934-021-01657-6
  42. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clinical Gastroenterology and Hepatology. 2006; 4(6): 754-759. doi: 10.1016/j.cgh.2006.03.028
  43. Hsu BB, Gibson TE, Yeliseyev V, Liu Q, Bry L, Silver PA, et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host and Microbe. 2019; 25(6): 803-814.e5. doi: 10.1016/j.chom.2019.05.001
  44. Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV. Microencapsulation of probiotics for gastrointestinal delivery. Journal of Control Release. 2012; 162(1): 56-67. doi: 10.1016/j.jconrel.2012.06.027
  45. Salmaso S, Elvassore N, Caliceti P. Lipid-based nanosystems for intestinal delivery of drugs and bioactives: from preclinical to clinical studies. Advanced Drug Delivery Reviews. 2021; 177: 113957. doi: 10.1016/j.addr. 2021.113957
  46. Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H. Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiology Letters. 2012; 334(1): 1-15. doi: 10.1111/j.1574-6968.2012.02593.x
  47. Wang Y, Xu H, Zhang L, Wang P. Intelligent delivery systems for probiotics and prebiotics: a review. Critical Reviews in Food Science and Nutrition. 2022; 62(14): 3858-3878. doi: 10.1080/10408398.2020.1863540
  48. Luisetto M, Ferraiuolo A, Fiazza C, Cabianca L, Edbey K, Mashori GR, Latyshev OY. Artificial intelligence in the pharmaceutical galenic field: A useful instrument and risk consideration. Mediterranean Journal of Medical Research. 2025; 2(1): 10-19. doi: 10.5281/zenodo.15259824
  49. Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nature Reviews Gastroenterology and Hepatology. 2019; 16(1): 35-56. doi: 10.1038/s41575-018-0061-2
  50. Khanna S, Tosh PK. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clinic Proceedings. 2014; 89(1): 107-114. doi: 10.1016/j.mayocp.2013.10.011
  51. McCay PH, McGavigan L, Forsythe P. Ethical considerations in manipulating the microbiome for mental health. Microorganisms. 2023; 11(4): 912. doi: 10.3390/microorganisms11040912
  52. Steidler L, Rottiers P. Therapeutic drug delivery by genetically modified Lactococcus lactis. Annals of the New York Academy of Sciences. 2006; 1072: 176-186. doi: 10.1196/annals.1326.028
  53. Rea K, Dinan TG, Cryan JF. The microbiome: a key regulator of stress and neuroinflammation. Neurobiology of Stress. 2016; 4: 23-33. doi: 10.1016/j.ynstr.2016.03.001
  54. Sarkar A, Harty S, Lehto SM, Moeller AH, Dinan TG, Dunbar RIM, et al. The microbiome in psychology and cognitive neuroscience. Trends in Cognitive Sciences. 2018; 22(7): 611-636. doi: 10.1016/j.tics.2018.04.006
  55. Hills RD, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: Profound implications for diet and disease. Nutrients. 2019; 11(7): 1613. doi: 10.3390/nu11071613

Submitted date:
06/15/2025

Reviewed date:
09/05/2025

Accepted date:
09/16/2025

68cc94a5a9539568ad43de04 mjmmr Articles
Links & Downloads

Mediterr J Med Med Sci

Share this page
Page Sections