31MAR

Welcome To Mediterr J Med Med Sci

Manuscripts are accepted for consideration with understanding that they are represent original material and they are not being considered for publication elsewhere. The editors welcome the submission of relevant articles for editorial consideration. Manuscripts and all scientific and professional data should be addressed to Editor-in-Cheif (Fathisherif@gmail.com).

Mediterranean Journal of Medicine and Medical Sciences
https://mmj.org.ly/article/doi/10.5281/zenodo.18407685

Mediterranean Journal of Medicine and Medical Sciences

Perspective Molecular biology

Targeting mitochondrial function through clinical foods: Emerging strategies for metabolic diseases

Rafsan Sium

Downloads: 1
Views: 31

Abstract

Metabolic problems, aging, and age-related illnesses like insulin resistance, obesity, sarcopenia, and neurodegeneration are all significantly influenced by mitochondrial dysfunction. Foods that have been shown to have physiological or therapeutic benefits are known as clinical foods, and they have gained attention as possible modulators of mitochondrial function. To improve cellular energy homeostasis and lower oxidative stress, bioactive substances as polyphenols, omega-3 fatty acids, sulforaphane, curcumin, and epigallocatechin gallate can affect mitochondrial biogenesis, mitophagy, oxidative phosphorylation, and NAD⁺ metabolism. The gut-mitochondria axis, where metabolites originating from the microbiota influence mitochondrial pathways that connect metabolism, immunity, and nutrition, was highlighted by recent research. In addition to discussing molecular mechanisms and signaling pathways, this article highlights the most recent research on clinical diets that target mitochondrial function and briefly describes their potential therapeutic uses.

Keywords

Mitochondrial dysfunction, gut-mitochondria axis, nutrients, stress, ATP

References

  1. Ciobârcă D, Cătoi AF, Gavrilaș L, Banc R, Miere D, Filip L. Natural bioactive compounds in the management of type 2 diabetes and metabolic (dysfunction)-associated steatotic liver disease. Pharmaceuticals (Basel). 2025; 18(2): 279. doi: 10.3390/ph18020279
  2. Leith D, Lin YY, Brennan P. Metabolic dysfunction-associated steatotic liver disease and type 2 diabetes: A deadly synergy. TouchRieviews in Endocrinology. 2024; 20(2): 5-9. doi: 10.17925/EE.2024.20.2.2
  3. Balakina A, Sidorova Y, Petrov N, Shipelin V. Food minor bioactive compounds of polyphenolic and polyprenolic nature are promising agents for the prevention and therapy of non-alcoholic fatty liver disease. Molecules. 2025; 30(18): 3791. doi: 10.3390/molecules30183791
  4. Su Z, Guo Y, Huang X, Feng B, Tang L, Zheng G, et al. Phytochemicals: Targeting mitophagy to treat metabolic disorders. Frontiers in Cell and Developmental Biology. 2021; 9: 686820. doi: 10.3389/fcell.2021.686820
  5. Hoque M, Uddin MM, Rafi IK. Nutritional and therapeutic effects of banana on blood pressure and liver health. Journal of Tropical Pharmacy and Chemistry. 2025; 9(2): 52-57. doi: 10.25026/jtpc.v9i2.664
  6. Alharati SH, Elbakay JAM, Hermann A, Gbaj. Polycystic ovary syndrome: Molecular modeling study on potential Lepidium sativum bioactive compounds in modulating kiss-1 gene function. Mediterranean Journal of Medical Research. 2025; 2(3): 129-140. doi. 10.5281/zenodo.17069661
  7. Nizamuddin SFS. Polyphenol-rich black chokeberry (Aronia melanocarpa) and its therapeutic potential in type 2 diabetes mellitus: A comprehensive review. Mediterranean Journal of Medicine and Medical Sciences. 2025; 1(3): 31-42. doi: 10.5281/zenodo.17619107
  8. Kim MB, Lee J, Lee JY. Targeting mitochondrial dysfunction for the prevention and treatment of metabolic disease by bioactive food components. Journal of Lipid Atherosclerosis. 2024; 13(3): 306-327. doi: 10.12997/ jla.2024.13.3.306
  9. Xu X, Pang Y, Fan X. Mitochondria in oxidative stress, inflammation and aging: From mechanisms to therapeutic advances. Signal Transduction and Targeted Therapy. 2025; 10(1): 190. doi: 10.1038/s41392-025-02253-4
  10. Sas K, Szabó E, Vécsei L. Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection. Molecules. 2018; 23(1): 191. doi: 10.3390/molecules23010191
  11. Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nature Reviews Endocrinology. 2022; 18(4): 243-258. doi: 10.1038/s41574-021-00626-7
  12. Rogge MM. The role of impaired mitochondrial lipid oxidation in obesity. Biological Research for Nursing. 2009; 10(4): 356-73. doi: 10.1177/1099800408329408
  13. Kusminski CM, Scherer PE. Mitochondrial dysfunction in white adipose tissue. Trends in Endocrinology and Metabolism. 2012; 23(9): 435-443. doi: 10.1016/j.tem.2012.06.004
  14. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochemistry Journal. 2011; 435(2): 297-312. doi: 10.1042/BJ20110162. Erratum in: Biochemistry Journal. 2011; 437(3): 575. PMID: 21726199.
  15. Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metabolism. 2013; 17(4): 491-506. doi: 10.1016/j.cmet.2013.03.002
  16. Ahmed R, Uddin MM, Hoque M. Nutraceuticals: Food-based therapeutics and health benefits. Mediterranean Journal of Medicine and Medical Sciences. 2025; 1(1): 22-30. doi. 10.5281/zenodo.15771921
  17. Mohammed AA, Ali AA, Mohammed SD, Alkarghli Y. Community response to genetically modified food products in Libya. Mediterr J Pharm Pharm Sci. 2024; 4(2): 9-14. doi: 10.5281/zenodo.11111150
  18. Yin X, Lanza IR, Swain JM, Sarr MG, Nair KS, Jensen MD. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. Journal of Clinical Endocrinology and Metabolism. 2014; 99(2): E209-16. doi: 10.1210/jc.2013-3042
  19. Heinonen S, Buzkova J, Muniandy M, Kaksonen R, Ollikainen M, Ismail K, et al. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes. 2015; 64(9): 3135-3145. doi: 10.2337/db14-1937
  20. Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood). 2008; 233 (6): 674-688. doi: 10.3181/0711-MR-311
  21. Marventano S, Kolacz P, Castellano S, Galvano F, Buscemi S, Mistretta A, et al. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: Does the ratio really matter? International Journal of Food Sci Nutr. 2015; 66(6): 611-622. doi: 10.3109/ 09637486.2015.1077790
  22. Tannu I, Hasan MN, Hoque M. Health impacts of processed and ultra-processed foods. Hospital Pharmacology. 2025; 12(2): 1664-1673. doi: 10.5937/hpimj2502664T
  23. Schulze MB, Minihane AM, Saleh RNM, Risérus U. Intake and metabolism of omega-3 and omega-6 polyunsaturated fatty acids: Nutritional implications for cardiometabolic diseases. Lancet Diabetes Endocrinology. 2020; 8(11): 915-930. doi: 10.1016/S2213-8587(20)30148-0
  24. Jamiu MO, Maiha BB, Danjuma NM, Giwa A. Educational intervention on knowledge of hypertension and lifestyle/dietary modification among hypertensive patients attending a tertiary health facility in Nigeria. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 25024; 4(1): 1-11. doi: 10.5281/zenodo.10535778
  25. Rafi IK, Aktaruzzaman Md. Lifestyle and nutritional deficiencies associated with vegetarian diets. Mediterranean Journal of Medical Research. 2025; 2(2): 20-25. doi: 10.5281/zenodo.15336103
  26. AL-belazi BJ, Aldiab LM, Sherif FM. Inositol has a beneficial effect in the management of polycystic ovary syndrome: Special data for Libyan patients. Mediterranean Journal of Medical Research. 2026; 3(1): 14-26. doi: 10.5281/zenodo.18203319
  27. Kobori M, Takahashi Y, Sakurai M, Akimoto Y, Tsushida T, Oike H, et al. Quercetin suppresses immune cell accumulation and improves mitochondrial gene expression in adipose tissue of diet-induced obese mice. Molecular Nutrition and Food Research. 2016; 60(2): 300-312. doi: 10.1002/mnfr.201500595
  28. Xu Z, Huo J, Ding X, Yang M, Li L, Dai J, et al. Coenzyme Q10 improves lipid metabolism and ameliorates obesity by regulating CaMKII-mediated PDE4 inhibition. Scientific Reports. 2017; 7(1): 8253. doi: 10.1038/ s41598-017-08899-7
  29. Shishodia S, Sethi G, Aggarwal BB. Curcumin: Getting back to the roots. Ann N Y Academy Science. 2005; 1056: 206-217. doi: 10.1196/annals.1352.010
  30. Hoque M, Emon K, Malo PC, Hossain MH, Tannu SI, Roshed MM. Comprehensive guide to vitamin and mineral sources with their requirements. Indiana Journal of Agriculture and Life Sciences. 2023; 3(6): 23-31. doi: 10.5281/zenodo.10284736
  31. Awuchi CG, Okpala COR. Natural nutraceuticals, especially functional foods, their major bioactive components, formulation, and health benefits for disease prevention: an overview. Journal of Food Bioactives. 2022, 19: 97-123. doi: 10.31665/JFB.2022.18317
  32. Mantzorou M, Pavlidou E, Vasios G, Tsagalioti E, Giaginis C. Effects of curcumin consumption on human chronic diseases: A narrative review of the most recent clinical data. Phytotherapy Research. 2018; 32(6): 957-975. doi: 10.1002/ptr.6037
  33. Gutierrez-Mariscal FM, Yubero-Serrano EM, Villalba JM, Lopez-Miranda J. Coenzyme Q10: From bench to clinic in aging diseases, a translational review. Critical Review Food Sci Nutrition. 2019; 59(14): 2240-2257. doi: 10.1080/10408398.2018.1442316
  34. Ogbeide OK, Omorodion S, Akhidenor FI, Orazulike OJ, Igbinosa MO, Otortor D. Comparative study on the phytochemical composition, amino acid profile, antioxidant, in vitro anti-inflammatory, and in vitro anti-diabetic activities on the leaf and stem bark of Acalypha indica. Mediterranean Journal of Medical Research. 2025; 2(2): 55-64. doi: 10.5281/zenodo.15579785
  35. Bullon P, Newman HN, Battino M. Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: A shared pathology via oxidative stress and mitochondrial dysfunction? Periodontology. 2000. 2014; 64(1): 139-53. doi: 10.1111/j.1600-0757.2012.00455.x
  36. Becker T, Wagner R. Mitochondrial outer membrane channels: Emerging diversity in transport processes. Bioassays. 2018; 40(7): e1800013. doi: 10.1002/bies.201800013
  37. Turner N, Robker RL. Developmental programming of obesity and insulin resistance: Does mitochondrial dysfunction in oocytes play a role? Mol Hum Reprod. 2015; 21(1): 23-30. doi: 10.1093/molehr/gau042
  38. Bogenhagen DF. Mitochondrial DNA nucleoid structure. Biochim Biophys Acta. 2012; 1819(9-10): 914-920. doi: 10.1016/j.bbagrm.2011.11.005
  39. Cserép C, Pósfai B, Schwarcz AD, Dénes Á. Mitochondrial ultrastructure is coupled to synaptic performance at axonal release sites. eNeuro. 2018; 5(1): ENEURO.0390-17.2018. doi: 10.1523/ENEURO.0390-17.2018
  40. Wallace DC. The mitochondrial genome in human adaptive radiation and disease: On the road to therapeutics and performance enhancement. Gene. 2005; 354: 169-180. doi: 10.1016/j.gene.2005.05.001
  41. Bournat JC, Brown CW. Mitochondrial dysfunction in obesity. Current Opinion in Endocrinology, Diabetes and Obesity. 2010; 17(5): 446-452. doi: 10.1097/MED.0b013e32833c3026
  42. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochemistry Journal. 2011; 435(2): 297-312. doi: 10.1042/BJ20110162. Erratum in: Biochemistry Journal. 2011; 437(3): 575.
  43. Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathology. 2007; 83(1): 84-92. doi: 10.1016/j.yexmp.2006.09.008
  44. Murphy MP. How mitochondria produce reactive oxygen species. Biochemistry Journal. 2009; 417(1): 1-13. doi: 10.1042/BJ20081386
  45. De Pauw A, Tejerina S, Raes M, Keijer J, Arnould T. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. The American Journal of Pathology. 2009; 175(3): 927-939. doi: 10.2353/ajpath.2009.081155
  46. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev. 2017; 2017: 8416763. doi: 10.1155/2017/8416763
  47. Abdelrahim LA, Hiblo HF. Effect of Carica papaya Linn (Caricaceae) leaf extracts on reactive oxygen species production. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2025; 5(3): 52-56. doi: 10.5281/zenodo.16739978
  48. Bruckbauer A, Zemel MB. Effects of dairy consumption on SIRT1 and mitochondrial biogenesis in adipocytes and muscle cells. Nutrition Metabolism (Lond). 2011; 8: 91. doi: 10.1186/1743-7075-8-91
  49. Garcia-Roves P, Huss JM, Han DH, Hancock CR, Iglesias-Gutierrez E, Chen M, Holloszy JO. Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proceeding National Academy Sci U SA. 2007; 104(25): 10709-10713. doi: 10.1073/pnas.0704024104
  50. Palioura D, Mellidis K, Ioannidou-Kabouri K, Galatou E, Mouchtouri ET, Stamatiou R, et al. PPARδ activation improves cardiac mitochondrial homeostasis in desmin deficient mice but does not alleviate systolic dysfunction. Journal of Mol Cell Cardiology. 2023; 183: 27-41. doi: 10.1016/j.yjmcc.2023.08.005
  51. Hancock CR, Han DH, Chen M, Terada S, Yasuda T, Wright DC, et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Notational Academy Sci USA. 2008; 105(22): 7815-7820. doi: 10.1073/ pnas.0802057105
  52. Leduc-Gaudet JP, Reynaud O, Chabot F, Mercier J, Andrich DE, et al. The impact of a short-term high-fat diet on mitochondrial respiration, reactive oxygen species production, and dynamics in oxidative and glycolytic skeletal muscles of young rats. Physiol Rep. 2018; 6(4): e13548. doi: 10.14814/phy2.13548
  53. Ricquier D, Bouillaud F. Mitochondrial uncoupling proteins: From mitochondria to the regulation of energy balance. Journal of Physiology. 2000; 529(Pt 1): 3-10. doi: 10.1111/j.1469-7793.2000.00003.x
  54. Ribeiro MF, Santos AA, Afonso MB, Rodrigues PM, Sá Santos S, Castro RE, et al. Diet-dependent gut microbiota impacts on adult neurogenesis through mitochondrial stress modulation. Brain Communication. 2020; 2(2): fcaa165. doi: 10.1093/braincomms/fcaa165
  55. Adeleke PA, Okubena O, Okubena A, Ajayi AM, Okubena O, Jegede FB. Anti-aging potentials of a polyphenol-rich supplement from African Sorghum bicolor leaf sheaths: A narrative review. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2025; 5(4): 58-77. doi: 10.5281/zenodo.17742769
  56. Brand MD, Orr AL, Perevoshchikova IV, Quinlan CL. The role of mitochondrial function and cellular bioenergetics in ageing and disease. British Journal Dermatology. 2013; 169(S2): 1-8. doi: 10.1111/bjd.12208
  57. Kyriazis ID, Vassi E, Alvanou M, Angelakis C, Skaperda Z, Tekos F, et al. The impact of diet upon mitochondrial physiology (Review). International Journal of Molecular Medicine. 2022; 50(5): 135. doi: 10.3892/ijmm.2022.5191

Submitted date:
11/02/2025

Reviewed date:
01/15/2026

Accepted date:
01/20/2026

Publication date:
01/26/2026

6977c139a95395619f60509f mjmmr Articles
Links & Downloads

Mediterr J Med Med Sci

Share this page
Page Sections